Male Genital Tract Microbiota: Insights into HIV Acquisition

Aaron Tobian, M.D., Ph.D.
Professor of Pathology, Medicine and Epidemiology
Johns Hopkins University
Male Circumcision

Circumcision reduces HIV-1 acquisition by 60%

Still don’t really understand how
Hypothesis

- BV in women → Genital anaerobes = HIV susceptibility
- Mediated by inflammation?
Methods

• Swab samples of coronal sulcus (microbiome, soluble immune markers)

• Foreskin tissue collection (model for mucosal immune responses)

• Microbiome
 – 16S rRNA gene-based quantitative PCR and pyrosequencing

• Soluble chemokines
 – Multiplexed ELISA (MesoScale Discovery)
Circumcision reduces prevalence and load of penile anaerobic bacteria

- MC decreased total bacterial load
- MC decreased microbiota diversity
 - Slight increase in aerobic taxa
 - Prevalence and absolute abundance of 12 bacterial taxa significantly decreased
Circumcision decreases penile IL-8

<table>
<thead>
<tr>
<th></th>
<th>% Detectable</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-8</td>
<td>59.4</td>
</tr>
<tr>
<td>MIG</td>
<td>25.0</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>6.7</td>
</tr>
<tr>
<td>MCP-1</td>
<td>6.7</td>
</tr>
<tr>
<td>MIP3α</td>
<td>5.0</td>
</tr>
<tr>
<td>IL-1α</td>
<td>3.9</td>
</tr>
<tr>
<td>RANTES</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Prodger 2016 Plos Path
Testing our hypothesis:

• Nested case-control study of seroconverters:
 – 60 seroconverters, 120 control (all uncircumcised)
Higher absolute abundance of anaerobic bacteria associated with seroconversion

• Remains significant after controlling for STIs and other demographics

Liu 2017 mBio
Cytokines associated with seroconversion

<table>
<thead>
<tr>
<th>Detectable Cytokine</th>
<th>Controls n=120</th>
<th>Seroconverters N=60</th>
<th>OR (95% CI)</th>
<th>aOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-8</td>
<td>63 (52.5%)</td>
<td>44 (73.3%)</td>
<td>2.52 (1.28, 4.99)</td>
<td>2.26 (1.04, 6.40)</td>
</tr>
<tr>
<td>MIG</td>
<td>23 (19.7%)</td>
<td>22 (36.7%)</td>
<td>2.49 (1.23, 5.03)</td>
<td>2.72 (1.15, 8.06)</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>5 (4.2%)</td>
<td>7 (11.7%)</td>
<td>3.02 (0.92, 9.91)</td>
<td></td>
</tr>
<tr>
<td>MCP-1</td>
<td>6 (5.0%)</td>
<td>6 (10.0%)</td>
<td>2.10 (0.65, 6.79)</td>
<td></td>
</tr>
<tr>
<td>MIP3α</td>
<td>4 (3.3%)</td>
<td>5 (8.3%)</td>
<td>2.61 (0.68, 10.06)</td>
<td></td>
</tr>
<tr>
<td>IL-1a</td>
<td>4 (3.3%)</td>
<td>3 (5.0%)</td>
<td>1.53 (0.33, 7.16)</td>
<td></td>
</tr>
<tr>
<td>RANTES</td>
<td>3 (2.5%)</td>
<td>2 (3.3%)</td>
<td>1.35 (0.22, 8.30)</td>
<td></td>
</tr>
</tbody>
</table>

Adjusted for STI diagnostics (syphilis and HSV-2), and all variables associated with either seroconversion, IL-8 or MIG (occupation, marital status, multiple sex partners, condom use, alcohol use, STI symptoms)

Prodger 2016 Plos Path
Cytokines associated with seroconversion

<table>
<thead>
<tr>
<th>Detectable Cytokines</th>
<th>Controls n=120</th>
<th>Seroconverters N=60</th>
<th>OR (95% CI)</th>
<th>aOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>55 (45.8%)</td>
<td>14 (23.3%)</td>
<td>REF</td>
<td>REF</td>
</tr>
<tr>
<td>1</td>
<td>42 (35.0%)</td>
<td>25 (41.7%)</td>
<td>2.34 (1.09, 5.03)</td>
<td>2.56 (0.93, 7.70)</td>
</tr>
<tr>
<td>2+</td>
<td>23 (19.2%)</td>
<td>21 (35.0%)</td>
<td>3.78 (1.61, 8.90)</td>
<td>3.30 (1.21, 12.50)</td>
</tr>
</tbody>
</table>

Adjusted for STI diagnostics (syphilis and HSV-2), and all variables associated with either seroconversion, IL-8 or MIG (occupation, marital status, multiple sex partners, condom use, alcohol use, STI symptoms).

Prodger 2016 Plos Path
Anaerobes and IL-8

Liu 2017 mBio
IL-8 and MIG Associated with Increased Neutrophils in Foreskin

CD15+ neutrophils in the foreskin highlighted in green by immunofluorescence

Prodger 2016 Plos Path
Anaerobe species correlate with HIV target cells

Peptostreptococcus anaerobius
- rho = 0.396, p < 0.001

Dialister propionicifaciens
- rho = 0.280, p = 0.009

Dialister succinatophilus <0.97
- rho = 0.227, p = 0.035

Dialister micraerophilus
- rho = 0.276, p = 0.010

Prevotella bivia
- rho = 0.399, p < 0.001

Prevotella disiens
- rho = 0.345, p = 0.001

Prevotella disiens <0.97
- rho = 0.220, p = 0.042

Staphylococcus spp.
- rho = -0.018, p = 0.9

CCR5+ CD4 T cells (log10 cells/mm²)

Log₁₀ Absolute abundance
Summary

- Male circumcision reduces penile anaerobes & IL-8
- Increased penile cytokines are associated with subsequent HIV seroconversion
- Penile anaerobes associated with increased penile IL-8 levels
- IL-8 associated with increased density of foreskin CCR5+ CD4 T cells and neutrophils in the foreskin
- Circumcision may protect against HIV by reducing local immune activation through the elimination of key anaerobes
Conclusions and Future Directions

• The foreskin provides a unique opportunity to understand mucosal immunology and HIV acquisition.

• Further understanding of penile inflammation is needed to develop novel mechanisms to reduce HIV acquisition and transmission.
 – Using discovery-based analysis, evaluating what penile bacterial species associated with seroconversion
 – Assessing whether reproductive maturation and sexual debut in adolescent boys leads to changes in the penile microbiome that affects the genital immunological milieu and risk of acquiring HIV
Acknowledgments

University of Western Ontario
Jessica Prodger

University of Toronto
Rupert Kaul
Kamnoosh Shahabi

George Washington U
Cindy Liu
Lance Price
Maliha Aziz

Rakai Health Sciences Program
David Serwadda
Godfrey Kigozi
Fred Nalugoda
Ronald Galiwango
Nehemiah Kighoma
Sarah Kalibbala
Margaret Anyokorit
Male Deo
Moses Kakanga
Anthony Ndyanabo
Aggrey Anok
James Namutete

The men and women of Rakai who donated their time

Johns Hopkins University
Ron Gray
Maria Wawer
Joseph Ssekasanvu

National Institutes of Health
Steve Reynolds
Thomas Quinn

Funding: NIH
R01AI123002-01A1
R01AI087409-01A1
U01AI51171
R01AI128779-01
R01AI087409