The HIV Latent Reservoir in Ugandans: Implications for HIV Cure

Thomas C. Quinn, MD
Associate Director of International Research
Division of Intramural Research, NIAID, NIH
Acknowledgements

Jessica Prodger
Steve Reynolds
Andrew Redd
Katherine Yu
Adam Capoferri
Robert Siliciano
Janet Siliciano
Aggrey Anok
Jingo Kasule
Taddeo Kityamuweesi
David Serwadda

And the Rakai Health Sciences Team and Participants!!
Dynamics of HIV-1 Replication in Patients on ART Therapy

- **Start Rx**
- **First phase** ($t_{1/2} = 1$ day)
- **Second phase** ($t_{1/2} = 2$ weeks)

Limit of Detection: 50 copies/ml

1) Viral replication not suppressed by HAART
2) Viral reservoirs

x-axis: Time on HAART (days)

y-axis: Plasma HIV-1 RNA (copies/ml)
Latent Reservoir Poses the Greatest Barrier to Cure

$t_\frac{1}{2} = 44.2$ months
73.4 years

Latent Viral Reservoir (LVR) in Sub-Saharan Africans

- HIV cure research is dependent on accurate measurements of the LVR. However, no studies had previously quantified LVR in sub-Saharan Africans.

- High burden of endemic infections and other regional differences (viral subtype) may affect size of the LVR and efficacy of cure strategies.

- Quantitate the LVR size and dynamics over time, and measure correlates of immune parameters in SSA in order to tailor cure strategies as they develop.
Study Populations

• Rakai, Uganda:
 – 70 HIV+ individuals on ART; >two VL <40 copies 12-18 months apart.
 • LVR quantification: Quantitative viral outgrowth assay (Q-VOA)
 • Retested annually for 5 years to determine decay curves

• Baltimore, USA:
 – 51 Moore Clinic patients studied using same techniques (Q-VOA)
 • Decay curves already calculated
Frequency of Resting CD4+ T cells Infected with Latent, Replication-Competent HIV-1 in Americans and Ugandans as Measured by QVOA

• Isolates were sequenced in gp41 and pol using MiSeq NGS sequencing protocol
• No difference in IUPM between A, D, recombinants (p=0.3)
 – A: median = 0.46 IUPM (IQR: 0.21 – 1.55 IUPM)
 – D: median = 0.34 IUPM (IQR: 0.15 – 0.79 IUPM)
 – Recombinants: 1.10 IUPM (IQR: 0.24 – 2.20 IUPM)
• Continuing to sequence additional outgrowth wells from all participants for clonality

Prodger et al., Clin Infect Dis. 2017
Direct Correlation of Reservoir Size (IUPM) with Set-point Viral Load and Inverse Correlation with Time Virally Suppressed

Slopes not significantly different, p=0.3
Latent Reservoir Size by Gender

• In this original study, Ugandan women had a much smaller reservoir size than American women, but the difference was not significant due to the few women in the US study.

• Thus we expanded the study to include a total of 90 Ugandans (57 women and 33 men).

• Ugandan women had a significant lower median reservoir size (0.53 IUPM) compared to men (1.01 IUPM) (p<0.01).
Ugandan Study of HIV Latent Reservoir by Sex

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Females (n = 57)</th>
<th>Males (n = 33)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>41.1 (37.4, 47.2)</td>
<td>44.2 (40.3, 47.1)</td>
<td>0.15</td>
</tr>
<tr>
<td>Subtype, n (%)</td>
<td></td>
<td></td>
<td>0.76</td>
</tr>
<tr>
<td>A</td>
<td>9 (15.8)</td>
<td>5 (15.2)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2 (3.5)</td>
<td>1 (3.0)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>26 (45.6)</td>
<td>17 (51.5)</td>
<td></td>
</tr>
<tr>
<td>A/D</td>
<td>7 (12.3)</td>
<td>3 (9.1)</td>
<td></td>
</tr>
<tr>
<td>A/F</td>
<td>1 (1.8)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A/C</td>
<td>0</td>
<td>1 (3.0)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>12 (21.1)</td>
<td>6 (18.2)</td>
<td></td>
</tr>
<tr>
<td>Pre-ART Viral Load (\log_{10} copies/mL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females (n = 47); Males (n = 28)</td>
<td>4.62 (3.88, 4.93)</td>
<td>4.72 (4.17, 5.22)</td>
<td>0.18</td>
</tr>
<tr>
<td>Nadir CD4+ T cell count (cells/μL)</td>
<td>180 (109, 232)</td>
<td>168 (129, 238)</td>
<td>0.92</td>
</tr>
<tr>
<td>Time on ART (years)</td>
<td>7.0 (5.3, 8.5)</td>
<td>6.9 (3.3, 9.3)</td>
<td>0.86</td>
</tr>
<tr>
<td>CD4+ T cell count at QVOA (cells/μL)</td>
<td>594 (461, 740)</td>
<td>458 (380, 559)</td>
<td><0.01</td>
</tr>
<tr>
<td>CD4+/CD8+ T cell ratio at QVOA</td>
<td>0.89 (0.65, 1.12)</td>
<td>0.63 (0.56, 0.84)</td>
<td><0.01</td>
</tr>
<tr>
<td>Viremic time (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females (n = 16); Males (n = 16)</td>
<td>6.1 (4.2, 10.2)</td>
<td>5.6 (3.7, 7.8)</td>
<td>0.46</td>
</tr>
</tbody>
</table>
Frequency of Viral Outgrowth by Sex

The graph illustrates the frequency of viral outgrowth (IU/PM) by sex. The x-axis represents sex (Female vs. Male), and the y-axis represents the frequency of viral outgrowth on a logarithmic scale. The data points indicate a statistically significant difference between the sexes, as indicated by the p < 0.01 notation.
Measurement of HIV DNA gag per million cells
Proportion of Reactivated HIV per DNA

The figure shows the proportion of reactivated HIV per DNA for females and males. The x-axis represents sex (Female and Male), and the y-axis represents the proportion of reactivated HIV virus on a logarithmic scale. The p-value is 0.06.
Summary and Future Studies

- HIV latent reservoir was smaller in Ugandans compared to Americans, and differed significantly by gender among Ugandans, but not by subtype.

- Further studies on gender differences in latent reservoir activation.
 - As shown by others, estrogen receptor-1 is a key regulator of HIV-1 latency that imparts gender-specific restrictions on the latent reservoir (Das et al, PNAS 2018; Scully et al, JID 2019).
 - Accurate measurements of intact, replication-competent virus, total integrated viral DNA and intact proviral DNA (IPDA).

- Sequencing of the viral outgrowths for clonality and timing with ARV use.